M160

Přesný DC kalibrátor

Uživatelská příručka

Obsah

OBRÁ	ZKY	4
TABU	LKY	
1. Z	ÁKLADNÍ INFORMACE	
1. L 1 D	Δίρρανα και ιβράτορι κ βρονοζι	6
2. 1		0
2.1.	KONTROLA SESTAVY, INSTALACE	6 6
2.2.	DOBA NÁBĚHU	0
2.3.	Bezpečnostní ustanovení	
3. P	OPIS	
31	Přední panel	8
3.2.	ZADNÍ PANEL	
4. 0	VLÁDÁNÍ KALIBRÁTORU	
		11
4.1.	PRIPOJENI A ODPOJENI VYSTUPNICH SVOREK	II 11
4.2. 43	SVORKY NA PREDNIM PANELU Nastavení funkce	
4.4.	REŽIM STEP	
4.5.	NASTAVENÍ HODNOTY VÝSTUPNÍHO SIGNÁLU	
4.6.	NASTAVENÍ VEDLEJŠÍCH PARAMETRŮ (SETTINGS MENU)	19
4.7.	PŘEDNASTAVENÍ (PRESET MENU)	
4.8.	Hlavní menu (Main Menu)	
5. K	ALIBRACE	
5.1.	KALIBRAČNÍ MENU	
5.2.	KALIBRAČNÍ DATA	
5.3.	VÝBĚR KALIBRAČNÍHO BODU	
5.4.	NASTAVENI NOVEHO KALIBRACNIHO UDAJE	
3.3. 4	KALIBRACNI BODY	20 27
5.6.	AUTOKALIBRACE	
6. K	ONTROLA PARAMETRŮ PŘÍSTROJE	29
7 D		22
7. D		
8. U	DRZBA	
8.1.	VÝMĚNA POJISTKY	
8.2.	Očištění vnějšího povrchu	
9. N	IODUL 19" (VERZE M160-VXX1X)	
10.	SPECIFIKACE	
11.	INFORMACE PRO OBJEDNÁNÍ	42
12.	PŘÍSLUŠENSTVÍ	
PROH	LÁŠENÍ O SHODĚ	43

Obrázky

Obr. 1 Úvodní obrazovka	6
Obr. 2 Doba náběhu	7
Obr. 3 Přední panel	8
Obr. 4 Displej	9
Obr. 5 Zadní panel	10
Obr. 6 Svorky na předním panelu	11
Obr. 7 Nastavení funkce	12
Obr. 8 Funce napětí	. 12
Obr. 9 Funkce proudu	13
Obr. 10 Funkce TC	13
Obr. 11 Funkce frekvence	. 14
Obr. 12 Funkce RTD	. 15
Obr. 13 Funkce odporu	15
Obr. 14 Režim Step	. 16
Obr. 15 Seznam sekvencí	. 16
Obr. 16 Nová sekvence	17
Obr. 17 Úprava záznamu sekvence	. 17
Obr. 18 Numerické zadání hodnoty	18
Obr. 19 Nastavení vedlejších parametrů – Settings menu	19
Obr. 20 Předvolby – Preset menu	19
Obr. 21 Hlavní menu	20
Obr. 22 Heslo	. 22
Obr. 23 Vstup do kalibračního menu	. 22
Obr. 24 Kalibrace napěťových rozsahů	24
Obr. 25 Kalibrační bod	24
Obr. 26 Nastavení nového kalibračního údaje	. 25
Obr. 27 Autokalibrace offsetu	28
Obr. 28 Modul 19" rack, čelní panel	. 35

Tabulky

Tab. 1 Kalibrační body – Napětí	26
Tab. 2 Kalibrační body – Proud	26
Tab. 3 Kalibrační body – Teplota (Externí RJ)	27
Tab. 4 Kalibrační body - Frekvence	27
Tab. 5 Kalibrační body – Odpor (option)	27
Tab. 6 Kontrola napěťového rozsahu 30V	30
Tab. 7 Kontrola napěťových rozsahů	30
Tab. 8 Kontrola proudového rozsahu 25 mA	31
Tab. 9 Kontrola proudového rozsahu	31
Tab. 10 Kontrola kmitočtu	31
Tab. 11 4W Kontrola odporu (option)	31
Tab. 12 2W Kontrola odporu (option)	32

1. Základní informace

Přesný DC kalibrátor M160 je zdrojem přesného DC napětí a DC proudu. Nabízí simulaci termočlánků, snímačů RTD a některé další funkce vhodné pro procesní kalibrace. Kalibrátor je určen pro použití ve výrobě, ale může být použit i pro vývojové nebo kalibrační laboratoře.

Aktuální nastavené hodnoty jsou zobrazovány na TFT displeji s vysokou rozlišovací schopností. M160 je sofistikovaný přístroj s vlastní rekalibrační procedurou. Procedura umožňuje rekalibraci přístroje bez jakéhokoliv mechanického dostavení.

M160 může být ovládán manuálně z klávesnice předního panelu, dálkově prostřednictvím sběrnice RS232 nebo prostřednictvím option IEEE488, USB a sběrnice Ethernet. Kalibrátor lze snadno používat v kalibračních systémech s podporou software CALIBER.

2. Příprava kalibrátoru k provozu

2.1. Kontrola sestavy, instalace

Základní příslušenství dodávané s přístrojem:

- Přesný DC kalibrátor M160/M160i
- Síťový kabel
- Uživatelská příručka
- Protokol výstupní kontroly
- Pojistka
- Option 15 měřicí kabel (černý)
- Option 16 měřicí kabel (červený)
- Option 160-60 frekvenční adaptér
- Option 160-70 R/frekvenční adaptér (pouze s M160)

Kalibrátor je určen pro napájení ze sítě 230/115 V – 50/60 Hz. Před zapnutím umístíme kalibrátor na rovnou plochu. Pokud byl přístroj skladován mimo referenční teplotu, je třeba jej nechat hodinu stabilizovat.

2.2. Uvedení přístroje do provozu

- Před připojením kalibrátoru k síťovému napájení zkontrolujeme polohu síťového přepínače na zadním panelu.
- Zasuneme zástrčku síťového kabelu do zásuvky na zadním panelu a kabel připojíme k síťovému napájení.
- Zapneme síťový vypínač na zadním panelu přístroje. Po zapnutí se rozsvítí displej:

Obr. 1 Úvodní obrazovka

- kalibrátor provádí po dobu cca 5 s testování vnitřních obvodů.
- Po ukončení testů se kalibrátor resetuje do stavu Startup (a nastaví se do polohy první položky v tabulce předvoleb). Toto nastavení lze uživatelsky změnit. Defaultní nastavení je následující:

Funkce

DC napětí

Nastavená hodnota	10.0000 V
Výstupní svorky	OFF

2.3. Doba náběhu

Přístroj je funkční po zapnutí a po proběhnutí úvodních testů. Specifikované parametry jsou garantovány pouze tehdy, když vnitřní teplota dosáhne určitého bodu.

Pokud se na displeji objeví symbol 55 , je vnitřní teplota mimo rozsah (Např. při spuštění, teplota okolí je příliš vysoká nebo příliš nízká), v takovém stavu nejsou garantovány specifikované parametry.

Obr. 2 Doba náběhu

2.4. Bezpečnostní ustanovení

Přístroj je konstruován v bezpečnostní třídě I dle ČSN EN 61010-1:2011.

Úroveň bezpečnosti je zajištěna konstrukcí a použitím specifických typů součástí.

Výrobce neručí za škody způsobené následkem zásahu do konstrukce přístroje nebo náhradou dílů neoriginálním typem.

Výstražné bezpečnostní symboly na přístroji

Pozor – nebezpečí úrazu elektrickým proudem. Nebezpečné napětí. Napětí > 30 V Mohou se objevit napěťové špičky DC nebo AC

3. Popis

3.1. Přední panel

Obr. 3 Přední panel

Čelní panel obsahuje displej, ovládací tlačítka a výstupní svorky.

1 Výstupní svorky napětí/proudu

HI / LO jsou dvě výstupní svorky. Svorka LO terminal je plovoucí do 50Vpk oproti kovovým částem skříně (PE).

2 Napěť ové sensovní svorky

S / S jsou napěťovými sensovními svorkami pro čtyř-drátové připojení UUT

3 Konektor snímače RTD

RTD konektor je vstupem RTD pro měření okolní teploty RJ reference.

4 Konektor R/FREQ

Konektor pro simulaci RTD (odporu) a měření/generování frekvence.

5 Svorka GND

Centrální zemnící zdířka (ochranná zem) je připojena ke kovové skříni přístroje a ochrannému vodiči PE síťového přívodu. Pokud připojované měřidlo UUT není uzemněno je doporučeno propojit výstupní napěťovou svorku HI se svorkou GND.

6 Displej

A1	► RTD SIM 4W 11:35:47 Spec. Min Max Resistance 0.10 °C -200 °C 850 °C 1385.05 8	x 10	← D1
B2 ———	ĵ00.00 °C	: 10	← D2
B3 ───→	RTD Type Vertinum RO 1000 9 Standard Vert385 (90)	+/-	← D3
C1	Meter - Frequency 0.00000 Hz	Cancel	← D4
	Frequency U.UUUUU Hz		

Obr. 4 Displej

Displej je rozdělen do čtyř sekcí:

A. Informační řádek

- Zvolená funkce (VOLTAGE 2W, CURRENT, ...)
- Reálný čas

B. Hlavní pole

V této oblasti jsou zobrazeny nastavené hodnoty generovaných signálů a doplňující údaje o nastavení kalibrátoru.

Tato sekce obsahuje následující typy dat:

1. Pomocné údaje

Tato část zobrazuje další informace týkající se vybrané položky. Zobrazí se, pokud je některá položka na obrazovce aktivní (je vybrána).

2. Hlavní údaje

Zobrazuje hlavní hodnotu vybrané funkce s její jednotkou. Na řádku se rovněž dvěma symboly $\bigvee \blacktriangle$ proti sobě vyznačuje aktivní poloha kurzoru, pokud je údaj nastavován. Polohu kurzoru lze ovládat tlačítky \blacktriangleleft , \triangleright a nastavení hodnoty tlačítky \bigstar , \bigvee .

3. Vedlejší údaje

Tato sekce zobrazuje další parametry příslušející aktuálně vybrané funkci:

- RTD standard (PT385, PT3916, ...)
- Typ RTD snímače RTD (Platina, ...)
- Odpor R0

C. Měřidlo

Tato část zobrazuje naměřenou frekvenci nebo hodnotu čítače. Měřidlo lze zobrazit nebo skrýt podle nastavení v menu (Meter show).

D. Programová tlačítka

Tato čtyři tlačítka zobrazená v pravé části displeje mohou mít různou funkci (závisí na zvolené funkci a aktuálním režimu). Tato čtyři tlačítka mají defaultně následující základní funkce:

Function – Nastavení funkce. Viz. Kapitola 4.3

Settings – Vedlejší parametry zvolené funkce. Viz. kapitola 4.5

Preset – Tabulka konfigurací parametrů pro dané funkce. Viz. kapitola 4.6

Menu – Základní menu, informace o přístroji. Viz. kapitola 4.7

3.2. Zadní panel

Na zadním panelu je síťová přívodka s pojistkou, voličem síťového napětí 115/230V a vypínačem, konektor pro připojení sběrnice RS232 a volitelně i LAN, USB a IEEE488.

Obr. 5 Zadní panel

4. Ovládání kalibrátoru

4.1. Připojení a odpojení výstupních svorek

Nastavená hodnota se připojí (odpojí) na výstup stiskem tlačítka OPER. Rozsvícená LED dioda v tlačítku signalizuje aktivní výstup.

Odpojené výstupní svorky znamenají:

- 0V v režimu funkcí napětí nebo simulace termočlánků (TC)
- 0mA v režimu proudu
- LOW stav s odpojeným pull-up výstupem ve funkci frekvence
- OPEN otevřené svorky ve funkci simulace odporových snímačů teploty (RTD)
- OPEN otevřené svorky ve funkci odporu

4.2. Svorky na předním panelu

s

s

100V MAX

SOV MA

Output terminals

R / FREQ

HI

14

LO

 \wedge

RTD

HI, LO

Hlavní svorky určené funkci napětí, proudu a simulaci TC.

S, S

Sensovní svorky pro funkci napětí, čtyřdrátové připojení – 4W.

RTD

Vstupní konektor pro externí snímač Pt100. Sensor je používán pro kompenzaci "studeného konce" RJ při simulaci TC.

GND

Zemnící svorka spojená s kovovými částmi skříně a ochranným vodičem PE.

R/FREQ

Vstup/Výstup konektor. Výstup pro funkci odporu 4W a simulace RTD 4W. Vstup/Výstup pro funkci frekvence s použitím adapter BNC/banánek, který je součástí dodávky přístroje

Obr. 6 Svorky na předním panelu

4.3. Nastavení funkce

Funkci lze změnit klávesou "Funkce". Výběr lze provést kurzorovými klávesami ▲,▼ nebo klávesami displeje a potvrzení tlačítkem SELECT, ENTER nebo klávesou "OK".

► VOLTAGE	2₩		13:1	7:53	
Fu Voltage	nction	0	U	Ļ	•
Current Limit TC Papers PWM		stable	1	m 0	Ok
RTD Resistanc	e			ШП	Cancel

Obr. 7 Nastavení funkce

Přístroj má následující funkce:

Napětí

Nabídka přímého nastavení DC napětí.

► VOLTAGE 2W 14:21:49	Function
10.00000 V <mark>=</mark>	Settings
Limit 50.00 mA → Adjustable	Preset
	Menu

Obr. 8 Funce napětí

Parametry:

1 wi willow j •	
Proudové omezení:	1.00 mA 50.00 mA
	Maximální výstupní proud bez limitace-omezení výstupního napětí.
	Parametr může být změněn nabídce "Adjustable". V pozici "Maximum" je
	nastavena maximální hodnota. Při překročení této hodnoty na svorkách
	přístroje se rozsvítí kontrolka přetížení svorek: 💻.
Rozsah:	Auto, 100V, 30V, 3V, 300mV
Volba napěťového roz	zsahu.
Výstup:	Měření hodnoty výstupního proudu.
Vedlejší parametry ((Settings):
Sense svorek:	Interní (2W), Externí (4W)
	Možnost volby dvou nebo čyřdrátového připojení UUT.
Zemnící svorka:	On, Off
	V režimu On připojí svorku LO k ochranné svorce GND (PE).

může sestávat až ze 100 kroků (amplituda/časový interval).

Časové sekvence:Na displeji je indikován symbolImage: GND u hlavní hodnoty.Časové sekvence:Lze uživatelsky definovat až 32 časových sekvencí, každá sekvence se

Proud

Nabídka přímého nastavení DC proudu.

► CUR	RENT		14:37:20	Function
1	0.00	000	mA 🛓	Settings
Limit	30.00 V	✓ Adjusta	ible	Preset
Range	Hoto	υυτρυτ	0.12 0	Menu

Obr. 9 Funkce proudu

Parametry:

Napěťové omezení:	1.00 V 100.00 V
	Maximální výstupní napětí bez limitace-omezení výstupního proudu.
	Parametr může být změněn nabídce "Adjustable". V pozici "Maximum" je
	nastavena maximální hodnota. Při překročení této hodnoty na svorkách
	přístroje se rozsvítí kontrolka přetížení svorek: 💻.
Rozsah:	Auto, 50mA, 25mA
	Volba proudového rozsahu.
Output:	Měření hodnoty výstupního napětí.
Vedlejší parametry	(Settings):
Sense svorek:	Interní (2W), Externí (4W)
	Možnost volby dvou nebo čtyřdrátového připojení UUT.
Zemnící svorka:	On, Off

Časové sekvence:Časové sekvence:Časové sekvenceLze uživatelsky definovat až 32 časových sekvencí. Každá sekvence se může
sestávat až ze 100 kroků (amplituda/časový interval).

ТС

Nabídka přímého nastavení teploty termočlánků TC.

Function	16:53:10	► TC SIM 2W
Settings	°[📱	100.000
Preset	000 000 °C	TC type ▼ R P I podo ▼ Monupl → P I
Menu	000.000 L	VA IIIDOG 🔺 Malioal 🛛 KA

Parametry:

•	
TC typ:	R, S, B, J, T, E, K, N, M, C, D, G2
RJ mód:	Manuální, Externí
	Kompenzace "studeného konce" termočlánku.
RJ:	Referenční teplota.
	- Červeně zobrazená měřená hodnota v režimu externího RJ módu.

- M Limit: F	Modře editovatelná hodnota v režimu manuálního RJ módu. Při překročení 50 mA nebo limitní hodnoty Master na svorkách zařízení e rozsvítí indikátor přetížení svorek::
Vedlejší parametry (Settings):
Zemnící svorka:	On, Off
	V režimu On připojí svorku LO k ochranné svorce GND (PE).
	Na displeji je indikován symbol 🖵 GND u hlavní hodnoty.
Teplotní jednotky:	°C, °F, K
Externí RJ:	Pro nastavení všech parametrů RJ.
RJ typ:	Platina, Nikl – typ externího RTD.
RJ RO:	$100 \Omega \dots 200 \Omega$, R0 hodnota externího RTD.
Platinum standard:	Pt385 (68), Pt385 (90), Pt3916, Pt3926, Pt uživatelsky definovatelná
Platina uživ. koef. A:	
Platina uživ. koef. B:	
Platina uživ. koef. C:	Uživatelsky volitelné koeficienty pro Platinu - standard.
Časové sekvence: Lze v sestá	uživatelsky definovat až 32 časových sekvencí. každá sekvence se může vat až ze 100 kroků (amplituda/časový interval).

Frekvence

Nabídka přímého nastavení frekvence (periody) generovaných pulsů.

► PWM 16:59:24			Function	
∏ , 1/T ,]	1000	.000	Hz	Settings
Duty Pull-Up	50.00 %	Count	100	Preset
1 101-04	011	nic tudi		Menu

Obr. 11 Funkce frekvence

Parametry:

Duty:	0.50% 99.50%, pracovního cyklu generovaného signálu
Count:	0 9999999, počet generovaných pulsů
	Generátor pulsů musí být zapnut On v menu Settings.
Pull-Up:	Off, On
Actual:	Aktuální počet generovaných pulsů

Vedlejší parametry (Settings):

JI	~ ~	8 /
Expression:		Frekvence, Perioda
Pulses generator:		Off, On
-		Přesné zadání počtu generovaných pulsů.
Časové sekvence:		Lze uživatelsky definovat až 32 časových sekvencí. Každá sekvence se může
		sestávat až ze 100 kroků (amplituda/časový interval).

RTD

Přímá nabídka nastavení teploty simulovaného odporového snímače RTD.

► RTD SIM 4W 17:05:07	Function
100.000 °C	Settings
RTD Type → Platinum RO 100.000 Ω	Preset
	Menu

Obr. 12 Funkce RTD

Parametery:	
Typ RTD:	Platina, Nikl
Standard:	PT385 (68), PT385 (90), PT3916, PT3926, PT uživatelsky definovatelný
R0:	$100 \Omega \dots 1000 \Omega$

Vedlejší parametry (Settings):

Připojení:	2W, 4W
	Dvoudrátové nebo čyřdrátové připojení UUT.
Zemnící svorka:	On, Off
	V režimu On připojí svorky Li a Lu k ochranné svorce GND (PE).
	Na displeji je indikován symbol 🖳 GND u hlavní hodnoty.
Teplotní jednotkat	°C, °F, K
Platina uživ. koef. A:	
Platina uživ. koef. B:	
Platina uživ. koef. C:	Uživatelsky volitelné koeficienty pro Platinu - standard.
Časové sekvence:	Lze uživatelsky definovat až 32 časových sekvencí. Každá sekvence se může
	sestávat až ze 100 kroků (amplituda/časový interval).

Odpor

Přímé nastavení hodnoty odporu.

► RESISTANCE 4W 17:02:0	5 Function
1000.00 Ω	
Short 🕶 Off	Preset
	Menu

Parametry:

Short:

Off, On

Simulace zkratu. Obvod zkratu je k výstupním svorkám připojen až po stisku tlačítka OPER.

Ostatní parametry (Settings):	
Připojení:	2W, 4W
	Dvoudrátové nebo čtyřdrátové připojení UUT.
Zemnící svorka:	On, Off
	V režimu On připojí svorku Lo k ochranné svorce GND (PE).
	Na displeji je indikován symbol 🖵 GND u hlavní hodnoty.
Časové sekvence:	Lze uživatelsky definovat až 32 časových sekvencí. každá sekvence se
	může sestávat až ze 100 kroků (amplituda/časový interval).

4.4. Režim Step

Režim step umožňuje definovat sekvenci hodnot, které kalibrátor následně automaticky spouští. Sekvence je definovaná tabulkou, která obsahuje vybranou funkční hodnotu (V, A, °C, atd) a časový interval. Do režimu Step se dostaneme pomocí tlačítka "Step".

Obr. 14 Režim Step

Nové parametry:

Step – právě vybraný "Step".

Count - počet opakování (neplatí pro odpor a RTD); nastavte 0 pro nekonečnou smyčku

Maximální počet "Steps" je 32, přičemž každý "Step" může mít až 100 sekvencí. Sekvence se spouští stisknutím tlačítka OPER nebo odesláním příkazu OUTP ON pomocí dálkového ovladače. Upravit konkrétní "Step" lze v *Settings* \rightarrow *Steps*:

STEPS	Edit
Sequence	Luit
STEP1	
STEP2	Flear
STEP3	cical
STEP4	8
STEP5	
STEP6	
STEP7	
STEP8	600 M 200
-	Exit

Obr. 15 Seznam sekvencí

Menu ukazuje seznam všech "Steps". Na pravé straně displeje se nacházejí následující uživatelské klávesy:

Edit – nastavení vybraného "Step". Požadovaný "Step" lze vybrat pomocí kurzorových tlačítek ▲, ▼. Tlačítka ◀, ▶ slouží k přechodu na další stránku.

Clear – vymaže všechny data u aktuálního "Step" a nastaví výchozí (prázdný) stav. Před vymazáním se objeví zpráva o potvrzení volby.

Exit – zavře seznam "Steps" a vrátí do předchozí nabídky.

Vytvoření nové sekvence

Zmáčknutím tlačítka *Edit* na prázdném "Step" se otevře toto podmenu:

STEPS		8 (-) 3
	Sequence Ş TEP1	
Step table		
		÷
		Cancel

Obr. 16 Nová sekvence

Step – změna názvu – Po otevření požadovaného "Step" můžeme změnit jeho název pomocí tlačítka **SELECT**. Název tabulky se nastavuje pomocí kurzorových kláves \blacktriangle , \triangledown (výběr znaků) a \blacktriangleleft , \triangleright (pozice). Název může obsahovat maximálně 8 znaků. Pomocí kontextové klávesy "A <-> a" lze přepínat velikost písmene na aktuální pozici kurzoru. Volbu potvrdíme znovu pomocí tlačítka <u>SELECT</u>.

Step – sekvence – Navigování v seznamu sekvencí se provádí kurzorovými klávesami ▲, ▼. Tlačítka
 , ► slouží k přechodu na další stránku. Upravování se provádí pomocí těchto tlačítek:

Add – přidá novou sekvenci.

Step edit	
Duration	Ĵ.000 s
Amplitude	10.0000 V

Obr. 17 Úprava záznamu sekvence

Duration – čas po který bude hodnota nastavena (od 10 ms do 600 s). Zmáčkněte tlačítko SELECT pro pokračování.

Amplitude – odpovídající funkční hodnota. (Výstupní rozsah kalibrátoru je vybrán automaticky, tak aby seděl ke všem hodnotám sekvence)

Edit – vyvolá editační panel pro úpravu aktuálně vybrané položky.

Delete – odstraní aktuálně vybraný záznam.

Cancel – vrací do seznamu "Steps" a umožňuje uložit nové sekvence.

Save – uloží sekvence a zavře panel.

Cancel – zahodí změny a zavře panel.

4.5. Nastavení hodnoty výstupního signálu

Editační mód

Parametry výstupního signálu mohou být změněny v Edit mode. Pouze parametry zobrazené modrou barvou mohou být změněny. Přepnutí displeje do editačního módu může být provedeno několika způsoby:

- Stiskem numerické klávesnice
- Stisknutím tlačítka "Select" (uprostřed kurzorových kláves)
- Stisknutím kurzorové klávesy

V editačním módu je editovaná hodnota zobrazena na modrém pozadí. Stiskem tlačítka SELECT můžete změnit zvolený parametr. Editační mód je ukončen stiskem tlačítka CANCEL.

Zadání hodnoty prostřednictvím numerické klávesnice

• Pomocí numerické klávesnice nastavte požadovanou hodnotu. Po zadání první číslice se zobrazí vstupní pole. V horním řádku vstupního pole je název upraveného parametru. Pomocí programových tlačítek lze zadat novou hodnotu v různých jednotkách.

► VOLTAGE 2W 17:01:13	mŲ
10.0000 V 🤄	V
Limit 50.00 mA ▼ Adjustable voltage	
12.5	Cancel

Obr. 18 Numerické zadání hodnoty

- Zadejte požadovanou hodnotu.
- Po kompletním zadání hodnoty stiskněte programové tlačítko odpovídajících jednotek nebo stiskněte tlačítko ENTER. Při stisku tlačítka ENTER jsou jednotky základní (V, Ω, °C …).
- Přístroj nastaví novou hodnotu.
- Hodnota je zkopírována do hlavního pole a pomocné pole zmizí.

Zadání hodnoty prostřednictvím kurzorových tlačítek

- Stiskněte tlačítka ◄, ►, ▲ nebo ▼. Na displeji se zobrazí kurzorové značky, které ukazují pozici vybrané číslice.
- Tlačítka ▲, ▼ mohou být použita pro změnu hodnoty. Tlačítka ◄, ► mohou být použita pro výběr pozice číslice.
- Do základního zobrazení displeje stiskněte tlačítko CANCEL.

Poznámka:

Všechny parametry mají své limity (horní a spodní). Jestliže je zvolena hodnota mimo funkční rozsah dekády objeví se upozornění ("Value too high (low)") a nová hodnota není akceptována.

4.6. Nastavení vedlejších parametrů (Settings menu)

Po stisknutí programového tlačítka "Settings" se v dané funkci zobrazí Settings menu. Pokud jste v editačním módu musíte nejdříve stisknout tlačítko "Cancel".

▶ UOLTAGE 2W	14:06:52	
ME	NU	
Internal or external se	ense connection	
Terminal sense	Internal (2W)	
Terminal ground	On	
Steps	Edit	
	Exit	

Obr. 19 Nastavení vedlejších parametrů – Settings menu

V nabídce settigs můžete upravit všechny dostupné vedlejší parametry aktuální funkce. Tato nastavení jsou při restartu zrušena. Pokud je chcete uložit pro další kalibrační relaci, použijte funkci "Preset".

4.7. Přednastavení (Preset menu)

Po stisknutí programové klávesy "Preset" v hlavním okně aktuální funkce zobrazí se menu umožňující přednastavit – předvolit zobrazené parametry. Pokud jste v editačním módu musíte nejdříve stisknout tlačítko "Cancel".

PRESETS			Saue
Preset	Function	Date	
00 Startup	Resistance	01.01.2012	
01			Load
02			
03			
04			Clear
05		100000	cical
06			
07		. 	E uit
n holen	•		EXIL

Obr. 20 Předvolby – Preset menu

Přednastavení-předvolby obsahují všechna nastavení, která by při restartování jinak nebyla uchována. Zahrnuje pomocné a hlavní parametry pro všechny funkce (viz předchozí kapitola), vybranou funkci, hlavní hodnotu a stav režimu step. Předvolby neobsahují systémová rozhraní nebo kalibrační data, stejně jako stav výstupu a tabulky režimu step. Lze uložit až 100 předvoleb, včetně speciální předvolby "Startup", která je načítána při každém spuštění zařízení.

Startup (pozice 00) je vyhrazena pro definování nastavení přístroje po zapnutí. Uživatel může uložit požadovanou konfiguraci, která bude nastavena vždy po zapnutí přístroje.

Přednastavení může být vybráno s použitím tlačítek \blacktriangleleft , \blacktriangleright .

- Save Uloží aktuální nastavení zařízení do vybrané předvolby. Název předvoleb lze upravit před finálním uložením.
- Load Vyberte příslušnou předvolbu a po stisknutí se vrátíte do okna funkce dané funkce definované předvolbou.

Clear – Po stisknutí tlačítka je vybraná předvolba přepsána defaultním továrním nastavením.

Exit – Návrat do základního okna funkce.

4.8. Hlavní menu (Main Menu)

Hlavní menu je zobrazeno po stisknutí programového tlačítka "Menu". Umožňuje konfiguraci a kalibraci přístroje.

MENU	
Information about calibrator	
😧 Information	
📖 Device	•
🔅 System	
←→ Interface	Select
ocalibration	
	Exit

Obr. 21 Hlavní menu

Požadovaná položka nabídky je zvýrazněna a vybereme ji kurzorovými tlačítky ▲, ▼ nebo programovými tlačítky na pravé straně displeje. Zvýrazněnou nabídku zvolíme stisknutím tlačítka SELECT nebo programového tlačítka "Select". Lze vybrat pouze editovatelné položky.

Information

Menu zobrazí informace o přístroji. Položky nelze uživatelsky měnit.

Manufacturer	- Výrobce
Model	- Model
Serial number	- Výrobní číslo
Software version	- Verze interního SW
Calibration validity	- Platnost kalibrace

Device

Menu umožňuje nastavení vedlejších parametrů společných všem funkcím. Popis jednotlivých položek je uveden v kapitole 4.3.

System

Menu umožňuje přednastavit systémové parametry přístroje.

Language Jazyková volba.

Backlight Úroveň podsvícení displeje.

Beeper Nastavení bzučáku.

Show tooltips on display Aktivuje / deaktivuje popisky ve funkčních oknech (specifikace, rozsahy ...).

Date&Time

Interní datum/čas.

Interface

Menu umožňuje nastavení parametrů sběrnice dálkového ovládání.

Active bus

Nastavení aktivní sběrnice. Pouze jediná sběrnice může být uživatelem vybrána pro dálkové ovládání.

RS232 Baudrate

Nastavení komunikační rychlosti sběrnice RS232. Stejná rychlost přenosu musí být nastavena i na řídící jednotce.

GPIB Address

Nastavení adresy sběrnice GPIB. Každý přístroj připojený ke sběrnici GPIB musí mít svou jedinečnou adresu.

LAN Settings

Nastavení parametrů sběrnice Ethernet. Přístroj využívá komunikačního protokolu Telnet/TCP/UDP. Defaultní nastavení:

DHCP ON		
IP Address	192.168.001.100	only valid if DHCP is OFF
Subnet mask	255.255.255.000	only valid if DHCP is OFF
Default gateway	255.255.255.255	only valid if DHCP is OFF
Telnet port number	23	
TCP port number	22	
UDP port number	22	
Host name	M160_SN710011	only valid if DHCP is ON

Calibration

Menu umožňuje změnu – justáž kalibračních konstant. Viz. kapitola 5.

5. Kalibrace

Přístup do kalibračního módu je z menu SETUP.

Před vlastní kalibrací je třeba zadat správné heslo. Při nekorektním zadaném heslu je přístup do kalibrace zamítnut. Defaultní tovární nastavení zabezpečovacího kódu je "2". Návrat do standardního režimu je možný po stisku tlačítka CANCEL.

MENU	
Adjust the calibrator, password required	
🚯 Information	
📖 Device	
🔅 System	
←→ Interface	Ok
Enter password	
2	Cancel

Obr. 22 Heslo

Varování:

Kalibrační data nemohou být změněna při náběhu přístroje. Můžete procházet dříve uložená data, ale všechny změny budou zahozeny.

5.1. Kalibrační menu

Kalibrační menu po zadání správného hesla.

MENU $ angle$ Calibration		
Access to calibration data		
Data		
Backup		•
Password	•••••	
Calibration date	14.05.2016	Select
Calibration interval	12 months	
		Exit

Obr. 23 Vstup do kalibračního menu

Data

Přímý vstup ke všem kalibračním datům.

Backup

Nástroj umožňující správu záložních kalibrací. Například umožňuje obnovení starších kalibračních dat.

Password

Editace stávajícího hesla pro vstup do kalibračního módu.

Calibration date Poslední kalibrační datum.

Calibration interval

Doporučený kalibrační interval pro tento přístroj.

5.2. Kalibrační data

Napětí

Kalibrační body DC napěťových rozsahů (300mV, 3V, 30V, 100V). Každý napěťový rozsah je kalibrován ve čtyřech fixních kalibračních bodech (Offset +, Offset -, Full range +, Full range -). Pro kalibraci je doporučen 8 1/2 místný etalonový multimetr.

Proud

Kalibrační body DC proudových rozsahů (25mA, 50mA). Každý proudový rozsah je kalibrován ve čtyřech fixních kalibračních bodech (Offset +, Offset -, Full range +, Full range -). Pro kalibraci je doporučen 8 1/2 místný etalonový multimetr.

Teplota

Kalibrační bod měřidla externího RJ. Měřidlo je kalibrováno v jednom fixním bodě (teplotní offset). Externí RJ musí být připojen.

Frekvence

Kalibrační body frekvenčního generátoru. Frekvence je kalibrována v jednom fixním bodě (100 Hz). Doporučený měřič frekvence s přesností 10ppm nebo přesnější.

Odpor

Kalibrační body odporové dekády. Odporová dekáda je kalibrována v 25 bodech. Pro kalibraci je doporučen 8 1/2 místný etalonový multimetr.

Vyšší úroveň kalibrace

Další možnost kalibrace, autokalibrace (viz. kapitola "Autokalibrace).

Přístroj může být kalibrován:

- kompletně, tzn. Všechny funkce ve všech předepsaných bodech
- částečně, tzn. Pouze vybrané funkce ve všech předepsaných bodech
- částečně, tzn. Pouze vybrané funkce ve vybraných bodech

Kompletní kalibrace se skládá ze všech dílčích kalibrací provedených v pořadí definovaném v kalibračním menu. Pokud je např. vybrána funkce "Napětí", není nutné kalibrovat všechny rozsahy definované kalibračním algoritmem. Není-li nová kalibrace všech rozsahů možná (např. požadovaný standard není k dispozici), mohou být potvrzena stará kalibrační data, tj. aktuální krok kalibrace lze přeskočit.

Kalibrace může být ukončena v kterémkoliv bodě kalibrační procedury. Tato částečná kalibrace má vliv na výsledné parametry kalibrátoru. Přesnost kalibrátoru je garantována, pokud byla provedena kompletní kalibrace.

5.3. Výběr kalibračního bodu

Postupujeme-li Calibration > Data zobrazí se nám nabídka možností jednotlivých kalibrací, které můžeme vybrat prostřednictvím kurzorových tlačítek \blacktriangle, \lor nebo programových tlačítek displeje. Pro zvolení požadované funkce, která má být kalibrována, stiskněte tlačítko <u>SELECT</u> nebo programové tlačítko. Zobrazují se následující údaje (následující příklad platí pro údaje o kalibraci napětí):

\dots $ angle$ Data $ angle$ Voltage	
Calibration of the range	_
Range 300 mV	
Range 3 V	•
Range 30 V	
Range 100 V	Edit
	Exit

Obr. 24 Kalibrace napěťových rozsahů

Doporučené kalibrační rozsahy. Pro zvolení požadovaného rozsahu, která má být kalibrován, stiskněte tlačítko SELECT nebo programové tlačítko Edit.

► CALIBRATION	14:59:45 12.09.2016	Previous
Voltage	Offset +	
Range 300 mV	1 / 4	Next
Nominal value	Uu 00.0	
Requested accuracy	Uu 5.00	History
Last calibrated	06.09.2016	
+Q.	1956 %	Close

Obr. 25 Kalibrační bod

Význam programových tlačítek:

Previous	vybírá předchozí kalibrační bod kalibrovaného rozsahu
Next	vybírá následující kalibrační bod kalibrovaného rozsahu
History	zobrazena historie vybraného kalibračního bodu
Save	uchování nové kalibrační hodnoty, stará hodnota je smazána
Close	kalibrační bod je přeskočen, stará hodnota je ponechána v paměti
	Přístroj se vrací do předchozího menu.

5.4. Nastavení nového kalibračního údaje

Zvolte odpovídající kalibrační bod.

► CALIBRATION	14:59:45 12.09.2016	Previous
Voltage	Offset +	
Range 300 mV	1 / 4	Next
Nominal value	Vu 00.0	
Requested accuracy	∪µ 00.5	History
Last calibrated	06.09.2016	
+Q.	1956 %	Close

Obr. 26 Nastavení nového kalibračního údaje

Stiskněte tlačítko OPER a připojte výstupní svorky. K výstupním svorkám připojte etalonový multimetr. Pomocí kurzorových tlačítek nastavte novou hodnotu vybraného kalibračního bodu. Displej zobrazuje nominální hodnotu a doporučenou přesnost kalibrace. Stiskem programového tlačítka Save zapíšete novou hodnotu do paměti přístroje. (Výstupní svorky musí být zapnuty – ON).

Postup opakujte pro všechny kalibrační body vybraného rozsahu. Pokud stisknete tlačítko Exit, kalibrátor se vrací do předchozího menu o úroveň výš.

Ukončení kalibrace

Kalibrace může být ukončena opakovaným stiskem programového tlačítka Close/Exit až se vrátí kalibrátor do hlavního menu.

5.5. Kalibrační body

Každá funkce kalibrátoru má přiřazené pevné kalibrační body, které je třeba nastavit během kalibrace pro dosažení nejlepší přesnosti. Nastavení všech bodů by se mělo udělat najednou a ve stejném pořadí, jak je uvedeno níže.

Napětí

Rozsah	Kalibrační bod	Jmenovitá hodnota	Požadovaná přesnost
300 mV	Offset +	0,00 µV	1,25 µV
300 mV	Offset -	0,00 µV	1,25 µV
300 mV	Full range +	285 mV	1,25 µV
300 mV	Full range -	-285 mV	1,25 µV
3 V	Offset +	0,00 µV	11 µV
3 V	Offset -	0,00 µV	11 µV
3 V	Full range +	2,85 V	11 µV
3 V	Full range -	-2,85 V	11 µV
30 V	Offset +	0,00 µV	110 µV
30 V	Offset -	0,00 µV	110 µV
30 V	Full range +	28,5 V	110 µV
30 V	Full range -	-28,5 V	110 µV
100 V	Offset +	0,00 µV	400 µV
100 V	Offset -	0,00 µV	400 µV
100 V	Full range +	95 V	400 µV
100 V	Full range -	-95 V	400 µV

Tab. 1 Kalibrační body – Napětí

Proud

Rozsah	Kalibrační bod	Jmenovitá hodnota	Požadovaná přesnost
25 mA	Offset +	0,00 µA	0,22 µA
25 mA	Offset -	0,00 µA	0,22 μA
25 mA	Full range +	23,75 mA	0,22 µA
25 mA	Full range -	-23,75 mA	0,22 µA
50 mA	Offset +	0,00 µA	0,35 µA
50 mA	Offset -	0,00 µA	0,35 µA
50 mA	Full range +	47,5 mA	0,35 µA
50 mA	Full range -	-47,5 mA	0,35 µA

Tab. 2 Kalibrační body – Proud

Teplota (Externí RJ)

Rozsah	Kalibrační bod	Jmenovitá hodnota	Požadovaná přesnost
-	Offset	23 °C	0,01 °C

Tab. 3 Kalibrační body – Teplota (Externí RJ)

Frekvence

Rozsah	Kalibrační bod	Jmenovitá hodnota	Požadovaná přesnost
15 kHz	100 Hz	100 Hz	0,01 µHz

Tab. 4 Kalibrační body - Frekvence

Odpor (option)

Rozsah	Kalibrační bod	Jmenovitá hodnota	Požadovaná přesnost
-	1	30 mΩ	1,00 mΩ
-	2	19,4 Ω	1,00 mΩ
-	3	38,2 Ω	1,00 mΩ
-	4	76,8 Ω	2,00 mΩ
-	5	150 Ω	3,00 mΩ
-	6	299 Ω	6,00 mΩ
-	7	589 Ω	15,00 mΩ
-	8	1,15 kΩ	30,00 mΩ
-	9	2,19 kΩ	100 mΩ
-	10	4,37 kΩ	250 mΩ
-	11	8,59 kΩ	500 mΩ
-	12	16,7 kΩ	1,00 Ω
-	13	33,0 kΩ	5,00 Ω
-	14	65,0 kΩ	10,0 Ω
-	15	129 kΩ	20,0 Ω
-	16	253 kΩ	40,0 Ω
-	17	503 kΩ	80,0 Ω
-	18	1,00 MΩ	200 Ω
-	19	2,00 MΩ	400 Ω
-	20	3,92 MΩ	1,00 kΩ
-	21	7,82 MΩ	5,00 kΩ
-	22	15,5 MΩ	50,0 kΩ
-	23	29,8 MΩ	200 kΩ
	24	58,8 MΩ	500 kΩ
-	25	117 MΩ	1 MΩ
-	2W short	382 mΩ	1 mΩ

Tab. 5 Kalibrační body – Odpor (option)

Kalibrace kompenzátoru studeného konce

Pro kalibraci kompenzátoru studeného konce vyhledejte: <u>AN108 Option 91 Verification and</u> <u>Calibration</u> návod.

5.6. Autokalibrace

V tomto menu je možné zapnout/vypnout automatickou interní autokalibraci.

Napěťový a proudový výstup Zapnutí / Vypnutí autokalibarce pro tyto funkce.

Upozornění:

24 hodinová specifikace je platná pouze s vypnutou funkcí autokalibrace.

Při zapnuté funkci autokalibrace provádí kalibrátor justáž všech nulových bodů na všech napěťových a proudových rozsazích každých 24 hodin. Autokalibrace se spustí pouze tehdy, pokud není kalibrátor používán a jsou splněny podmínky pro kalibraci (doba náběhu, referenční teplota....). Probíhající autokalibrace je indikována symbolem \Lambda a může být přerušena stiskem tlačítka output ON. I Přerušená autokalibrace se automaticky obnoví, když kalibrátor znovu zůstane nečinný.

Správné fungování funkce autokalibrace vychází z manuální kalibrace Offset+ na kalibračním rozsahu 300 mV. Po každém nastavení tohoto bodu se zobrazí následující hlášení o probíhající autokalibraci:

Obr. 27 Autokalibrace offsetu

Přerušení autokalibrace způsobí návrat všech kalibračních bodů zpět na předchozí hodnoty. Operaci můžete znovu iniciovat novou manuální kalibrací bodu 300 mV Offset +.

6. Kontrola parametrů přístroje

V této kapitole je doporučený postup pro verifikaci parametrů přístroje.

Doporučená zařízení

Pro kontrolu parametrů přístroje jsou doporučena následující zařízení:

- 81/2 místný etalonový multimetr typ HP3458A nebo Fluke 8508A, nebo podobný s přesností měření DC napětí 10 ppm nebo přesnější.
- čítač HP 53181A, HO 53130 nebo podobný s přesností 10 ppm nebo přesnější.

Konfigurace kalibrátoru M160

Kalibrátor může být kontrolován přímo z výstupních svorek na předním panelu. K potlačení vlivu šumu a interference s napájecím napětím kalibrátoru doporučujeme nastavit kalibrátor (Settings menu):

Zemnící svorka On

Ostatní nastavení kalibrátoru nemá vliv na jeho přesnost.

Kalibrátor umístíme minimálně 1 hodinu před kontrolou parametrů v místnosti se stabilní teplotou.

Postup

Verifikační procedura se sestává z následujících kroků:

- kontrola linearity 30 V napěťového rozsahu
- kontrola napěťových rozsahů 300 mV, 3 V, 100 V
- kontrola linearity 25 mA proudového rozsahu
- kontrola proudového rozsahu 50 mA
- kontrola kmitočtu 1 kHz
- 4W kontrola odporu v bodech 10 Ω , 100 Ω , 1 k Ω , 10 k Ω , 100 k Ω , 300 k Ω (s RTD option)
- 2W kontrola odporu v bodech 50 Ω , 100 Ω (s RTD option)

Požadované vybavení

Následující část popisuje postup ověření parametrů přístroje. Doporučené kontrolní body a jejich povolené odchylky jsou uvedeny v následující tabulce.

- 1. Umístěte kalibrátor v referenčních podmínkách a zapněte jej minimálně jednu hodinu v laboratoři s teplotou 13 °C až 33 °C.
- 2. Připojte na výstupní svorky kalibrátoru (Hi, LO) etalonový multimetr. Nastavte na multimetru parametry umožňující nejvyšší přesnost měření DC napětí.
- 3. Proveď te test linearity na napěť ovém rozsahu 30 V, testujte všechny ostatní napěť ové rozsahy podle tabulek. Naměřené odchylky by neměly překročit limity v tabulkách.
- 4. Připojte na výstupní svorky kalibrátoru (HI, LO) etalonový multimetr. Nastavte na multimetru parametry umožňující nejvyšší přesnost měření DC proudu.
- 5. Proveď te test linearity na proudovém rozsahu 25 mA, testujte všechny ostatní proudové rozsahy podle tabulek. Naměřené odchylky by neměly překročit limity v tabulkách.

- 6. Nastavte funkci čtyř svorkového měření odporu na etalonovém multimetru. Změřte pevné hodnoty odporu podle tabulky. Naměřené odchylky by neměla překročit limity v tabulkách.
- 7. Zkontrolujte výstupní kmitočet podle tabulky. Naměřené odchylky by neměly překročit limity v tabulkách.

Funkce	Rozsah	Hodnota	Max odchylka
Napětí	30 V	6 V	190 µV
Napětí	30 V	12 V	280 μV
Napětí	30 V	18 V	370 μV
Napětí	30 V	24 V	460 µV
Napětí	30 V	30 V	550 μV
Napětí	30 V	-6 V	190 µV
Napětí	30 V	-12 V	280 μV
Napětí	30 V	-18 V	370 μV
Napětí	30 V	-24 V	460 μV
Napětí	30 V	-30 V	550 μV

Rozsah 30 V – kontrola linearity

Tab. 6 Kontrola napěťového rozsahu 30V

Kontrola napěť ových rozsahů

Funkce	Rozsah	Hodnota	Max odchylka
Napětí	300 mV	150 mV	4,75 µV
Napětí	300 mV	300 mV	7 μV
Napětí	300 mV	-150 mV	4,75 μV
Napětí	300 mV	-300 mV	7 μV
Napětí	3 V	1,5 V	32,5 μV
Napětí	3 V	3 V	55 µV
Napětí	3 V	-1,5 V	32,5 μV
Napětí	3 V	-3 V	55 µV
Napětí	100 V	50 V	1,25 mV
Napětí	100 V	100 V	2 mV
Napětí	100 V	-50 V	1,25 mV
Napětí	100 V	-100 V	2 mV

Tab. 7 Kontrola napěťových rozsahů

Funkce	Rozsah	Hodnota	Max odchylka
Proud	25 mA	5 mA	1,18 µA
Proud	25 mA	10 mA	1,35 µA
Proud	25 mA	15 mA	1,53 µA
Proud	25 mA	20 mA	1,70 µA
Proud	25 mA	25 mA	1,88 µA
Proud	25 mA	-5 mA	1,18 µA
Proud	25 mA	-10 mA	1,35 µA
Proud	25 mA	-15 mA	1,53 µA
Proud	25 mA	-20 mA	1,70 µA
Proud	25 mA	-25 mA	1,88 µA

Rozsah 25 mA – kontrola linearity

Tab. 8 Kontrola proudového rozsahu 25 mA

Kontrola proudového rozsahu

Funkce	Rozsah	Hodnota	Max odchylka
Proud	50 mA	30 mA	2,05 µA
Proud	50 mA	50 mA	2,75 µA
Proud	50 mA	-30 mA	2,05 µA
Proud	50 mA	-50 mA	2,75 µA

Tab. 9 Kontrola proudového rozsahu

Kmitočet

Funkce	Rozsah	Hodnota	Max odchylka
Kmitočet	15 kHz	1 kHz	0,05 Hz

Tab. 10 Kontrola kmitočtu

Kontrola odporu 4W (option)

Funkce	Rozsah	Hodnota	Max odchylka
Odpor	200 Ω	50 Ω	40 mΩ
Odpor	200 Ω	100 Ω	65 mΩ
Odpor	200 Ω	150 Ω	90 mΩ
Odpor	1000 Ω	300 Ω	60 mΩ
Odpor	1000 Ω	1000 Ω	200 mΩ
Odpor	3000 Ω	3000 Ω	600 mΩ
Odpor	10000 Ω	10000 Ω	2 Ω
Odpor	30 kΩ	30 kΩ	15 Ω
Odpor	100 kΩ	100 kΩ	100 Ω
Odpor	300 kΩ	300 kΩ	1,5 kΩ

 Tab. 11 4W Kontrola odporu (option)

Kontrola odpor 2W (option)

Funkce	Rozsah	Hodnota	Max odchylka
Odpor	200 Ω	50 Ω	50 mΩ
Odpor	200 Ω	100 Ω	75 mΩ

Tab. 12 2W Kontrola odporu (option)

7. Dálkové ovládání

Dekáda může být ovládána prostřednictvím jedné ze sběrnic RS232, GPIB, LAN nebo USB. Výběr sběrnice je třeba provést v systémovém menu dekády. Všechny rozhraní sdílejí stejné příkazy s výjimkou následujících příkazů, které jsou určeny pouze pro rozhraní RS232, LAN a USB:

SYSTem:LOCal

Příkaz uvede dekádu do režimu manuálního ovládání.

SYSTem:REMote

Příkaz uvede dekádu do režimu dálkového ovládání.

SYSTem:RWLock

Příkaz uvede dekádu do režimu dálkového ovládání a uzamkne všechna tlačítka na čelním panelu.

Podrobný popis a struktura komunikačního protokolu je uvedena v anglické verzi návodu. Ta je volně na stránkách <u>https://www.meatest.com/user-manuals</u>.

8. Údržba

Tato kapitola vysvětluje, jak provádět běžnou údržbu, abyste udrželi zařízení v optimálním provozním stavu. Mezi úkoly v této kapitole patří následující:

- Výměna pojistky.
- Očištění vnějšího povrchu.

8.1. Výměna pojistky

Pojistka je umístěna v napájecím konektoru síťové zásuvky, umístěné na zadním panelu.

Postup výměny:

- Vypněte napájení odporové dekády.
- Vyjměte zástrčku síťového kabelu ze síťového konektoru na zadním panelu.
- Vložte čepel plochého šroubováku do otvoru voliče síťového napětí a vytáhněte pojistku.
- Vyjměte pojistku a zaměňte za novou se stejným označením a hodnotou.

8.2. Očištění vnějšího povrchu

Chcete-li, aby zařízení vypadalo jako nové, vyčistěte skříň a přední panel s klávesnicí měkkým mírně navlhčeným hadříkem buď vodou nebo neabrazivním mírným čisticím roztokem, který není škodlivý pro plasty.

9. Modul 19" (verze M160-Vxx1x)

Kalibrátor lze objednat jako 19 "modul pro snadné vestavění do 19" stojanu-racku. Výška modulu je 3HE.

Obr. 28 Modul 19" rack, čelní panel

10. Specifikace

Přesnost zahrnuje dlouhodobou stabilitu, teplotní koeficient, linearitu a návaznost na národní etalony. Stanovená přesnost je platná po zahřátí půl hodiny v teplotním rozmezí 23 ± 10 °C. Určená přesnost je platná po dobu jednoho roku.

DC napětí

0 až 100 V DC
6½ digitu
2 ppm
do 0,2 V

Rozsahy, rozlišení, 1 roční nejistota ± [ppm z hodnot + absolutní odchylka]

Rozsah	Autokal. zap.	Autokalibrace vypnuta			
	1 rok	24h stab. 1)	90 dní	180 dní	1 rok
300,0000 mV	$15 + 2,5 \ \mu V$	$3 + 1,5 \ \mu V$	$15 + 2,5 \ \mu V$	$18 + 3 \mu V$	$20 + 3 \mu V$
3,000000 V	$15 + 10 \ \mu V$	$3+5 \ \mu V$	$15 + 10 \ \mu V$	$18 + 15 \ \mu V$	$20 + 20 \ \mu V$
30,00000 V	$15 + 100 \ \mu V$	$3 + 50 \ \mu V$	$15 + 100 \ \mu V$	$18 + 150 \ \mu V$	$20 + 200 \ \mu V$
100,0000 V	$15+500 \ \mu V$	$3+200 \ \mu V$	$15+500 \ \mu V$	$18+750 \ \mu V$	20 + 1 mV

1) 24hodinová stabilita platí při konstantní teplotě (± 1°C)

Charakteristika zkreslení a zatížení

Rozsah	Max.	Typický šum		Typ. výst. odpor		CMRR
	prouu	0.1 – 10 Hz	10 Hz – 100 kHz	2W	4 W	50/60 Hz
300,0000 mV	50 mA	$2 \mu V_{PP}$	150 μV _{PP} / 25	$< 2 \text{ m}\Omega$	< 0,1 mΩ	>120 dB
3,000000 V	50 mA	$2 \mu V_{PP}$	150 µV _{PP} / 25	$< 2 \text{ m}\Omega$	< 0,1 mΩ	>120 dB
30,00000 V	50 mA	$20 \ \mu V_{PP}$	$400 \ \mu V_{PP} \ / \ 50$	$< 2 m\Omega$	$< 0,3 \text{ m}\Omega$	>130 dB
100,0000 V	25 mA	$40 \ \mu V_{PP}$	$600 \ \mu V_{PP} \ / \ 80$	$< 2 \text{ m}\Omega$	$< 0,5 \text{ m}\Omega$	>130 dB

DC proud

Celkový rozsah:	0 až 50 mA DC
Rozlišovací schopnost:	6 digitu
Typická linearita:	15 ppm

Rozsahy, rozlišení, 1 roční nejistota ± [ppm z hodnot + absolutní odchylka]

Rozsah	Autokal. zap.	Autokalibrace vypnuta		
	1 rok	90 dní	180 dní	1 rok
25,0000 mA	35 + 1 µA	$35 + 2 \mu A$	40 + 2,5 µA	$45 + 3 \mu A$
50,0000 mA	$35 + 1 \mu A$	$35 + 2 \mu A$	$40 + 2,5 \ \mu A$	$45 + 3 \mu A$

Rozsah	Max.	Typický šum		Typický 2W	CMRR
	парец	0.1 – 10 Hz	10 Hz – 100 kHz	vystupin oupor	50/60 Hz
25,0000 mA	100 V	0.3 µApp	10 μA _{PP} / 2 μA _{RMS}	> 300 MΩ	>50 nA/V
50,0000 mA	30 V	0.3 µApp	10 μA _{PP} / 2 μA _{RMS}	> 300 MΩ	>50 nA/V

Charakteristika zkreslení a zatížení

Kmitočet

Celkový rozsah: Otevřený kolektor: 10 mHz až 15 kHz max. 30 V/50 mA nebo interní pull up 100R / +5V (±10 %)

Rozsahy, rozlišení, 1 roční nejistota ± [ppm z hodnot]

Rozsah	Ppm hodnoty
200,0000 mHz	50
2000,000 mHz	50
20,00000 Hz	50
200,0000 Hz	50
2000,00 Hz	50
4,0000 kHz	100
10,000 kHz	600
15,00 kHz	1500

Měřidlo-kmitočtu

Celkový rozsah:	10 mHz až 100 kHz
Rozlišovací schopnost:	5 ¹ / ₂ digits
Přesnost:	$\pm 50 \text{ ppm}$

Měřidlo-proud (při funkci napětí)

Rozsahy:	5 mA, 25 mA, 50 mA (v závislosti nastavení proudového omezení)
Rozlišovací schopnost:	10 μΑ
Přesnost:	$\pm 0,1$ % z rozsahu

Měřidlo-napětí (při funkci proudu)

Rozsahy:	100 V
Rozlišovací schopnost:	10 mV
Přesnost:	$\pm 0,1$ % z rozsahu

Proudové omezení (při funkci napětí)

Rozsahy:	50 mA
Rozlišovací schopnost:	10 µA
Přesnost:	\pm 0,2 % z rozsahu

Napěťové omezení (při funkci proudu)

Rozsahy:	100 V
Rozlišovací schopnost:	10 mV

Přesnost:

TC

Rozlišovací schopnost:
Kompenzace studeného konce

0,01 °C manuální nebo automatická (s adaptérem 91) v rozsahu 0,00 – 40,00 °C

Тур	Rozsah	± °C
	-5010 °C	0,8 °C
R (EN60584-1/ITS90)	-10 100 °С	0,6 °C
	100 400 °C	0,4 °C
	400 1768 °C	0,3 °C
	-5020 °С	0,7 °C
S (EN60584-1/ITS90)	-20 100 °С	0,6 °C
	100 1768 °С	0,4 °C
	400 500 °C	0,8 °C
B (EN60584-1/ITS90)	500 800 °C	0,6 °C
	800 1820 °C	0,4 °C
I (EN60594 1/ITS00)	-210180 °С	0,15 °C
J (EN00304-1/11370)	-180 1200 °С	0,1 °C
T (EN60584 1/ITS00)	-200100 °С	0,2 °C
I (EN00304-1/11370)	-100 400 °C	0,1 °C
F (FN60584-1/ITS00)	-250200 °С	0,25 °C
E (E1100304-1/11370)	-200 1000 °С	0,1 °C
	-200100 °С	0,2 °C
K (EN60584-1/ITS90)	-100 900 °C	0,1 °C
	900 1372 °С	0,15 °C
	-200100 °C	0,3 °C
N (ENG0594 1/ITS00)	-100 100 °C	0,15 °C
II (EII00304-1/11370)	100 900 °C	0,1 °C
	900 1300 °С	0,15 °C
M (General Electric IPTS 68)	-50 1410 °C	0,1 °C
	0 100 °C	0,3 °C
C (Hoskins ITS 90)	100 900 °C	0,2 °C
	900 2315 °C	0,3 °C
	0 300 °C	0,3 °C
D (Hoskins ITS 90)	300 1100 °С	0,2 °C
	1100 2315 °С	0,3 °C
	0 300 °C	0,5 °C
G2 (Hoskins ITS 90)	300 2100 °С	0,2 °C
	2100 2315 °С	0,3 °C

Adapter 91 - Pt100 Externí blok pro kompenzaci studeného konce

Nejistota:0,3 °C; 0,1 °C při uložení kalibrační konstanty v M160Stabilita:< 0,05 °C/rok (typická)</td>

RTD 4W (pouze plná verze)

Celkový rozsah Pt:	-200 °C až +850 °C
Celkový rozsah Ni:	-60 °C až +300 °C
Rozlišovací schopnost:	0,01 °C

Тур	Rozsah	± °C ²⁾
Pt100 Pt1000	-200 0 °C	0,15 °C
	0 850 °С	0,2 °C
Ni100 Ni1000	-60 300 °C	0,1 °C

2) Pro referenční teplotu 23 °C \pm 2°C

RTD 2W (pouze plná verze)

Celkový rozsah Pt:
Celkový rozsah Ni:
Rozlišovací schopnost:

-200 °C až +850 °C -60 °C až +300 °C 0,01 °C

Тур	Rozsah	± °C ³⁾
Pt100 Pt1000	-200 850 °С	0,2 °C
Ni100 Ni1000	-60 300 °С	0,15 °C

3) Pro referenční teplotu 23 °C \pm 2°C

Odpor 4W (pouze plná verze)

Celkový rozsah:	10 Ω až 300 kΩ
Odpor zkratu (Short):	$< 50 \text{ m}\Omega$

Rozsah	\pm (% z hodnoty + Ω) ⁴⁾	
20,0000 Ω	0,05	15 mΩ
200,000 Ω	0,05	$15 \text{ m}\Omega$
1000,00 Ω	0,02	0
3000,0 Ω	0,02	0
10000 Ω	0,02	0
30,00 kΩ	0,05	0
100,0 kΩ	0,1	0
300 kΩ	0,5	0

4) Pro referenční teplotu 23 °C \pm 2°C

Odpor 2W (pouze plná verze)

Svorky: Celkový rozsah: Specifikace: Odpor zkratu (Short): Hi, Li (adaptér) 10 Ω až 300 kΩ + 10 mΩ ke specifikaci 4W < 200 mΩ

RTD, Odpor - omezení

Max. ztrátový výkon:	0,3 W
Max. proud:	0,2 A
Max. napětí:	50 Vpk

Všeobecné údaje

Sběrnice stálého připojení	:	RS232 (option IEEE488, USB, Ethernet)	
Napájení	:	115/230 V (- 13 %, + 10 %),	
		47-63 Hz, 60 VA max.	
Rozsah referenčních teplot	:	+13 °C +33 °C (napětí, proud, TC, kmitočet)	
-	:	+20 °C +26 °C (RTD, odpor)	
Rozsah pracovních teplot	:	+5 °C +45 °C	
Rozsah skladovacích teplot	:	-10 °C +55 °C	
Teplotní koeficient	:	<1ppm/°C (frekvence vstup i výstup)	
-		<10ppm/°C (RTD vstup na kompenzaci	
		termočlánků)	
		<25ppm/°C (odpor, RTD výstup)	
		10 % ze specifikace /°C (napětí, proud, termočlánky)	
Skříň	:	kovová	
Rozměry	:	Š 390 mm, V 128 mm, H 310 mm	
Hmotnost	:	5,5 kg	
Pojistky	:	T315mAL250 pro 230 V	
		T630mAL250 pro 115 V	

Poznámka:

Na displeji jsou zobrazovány pouze údaje s tolerancí nebo s nastaveným omezením. Všechny ostatní hodnoty mají informativní charakter.

11. Informace pro objednání

Sběrnice	
M160-V1xxx	- RS232
M160-V2xxx	- RS232, LAN, USB, IEEE488
Funkce	
M160i-Vxxxx	 ekonomická verze (napětí, proud, TC, kmitočet)
M160-Vxxxx	- planá verze (napětí, proud, TC, kmitočet, RTD, odpor)

Skříň

M160-Vxx0x	 stolní provedení
M160-Vxx1x	- modul 19", 3HE

Příklad objednání:

M160-V2010

 Přesný DC kalibrátor RS232, LAN, USB, IEEE488 / plná verze / modul 19"rack

12. Příslušenství

M160 Základní příslušenství (dodávané s přístrojem)

•	Síťový kabel	1 ks
•	Uživatelský manuál	1 ks
•	Protokol výstupní kontroly	1 ks
•	Pojistka	1 ks
•	Option 15 – měřicí kabel (černý)	1 ks
•	Option 16 – měřicí kabel (červený)	1 ks
•	Option 160-60 frekvenční adaptér (M160i)	1 ks
•	Option 160-70 R/frekvenční adaptér (M160)	1 ks

Příslušenství (objednávané zvlášť)

Adapter 91 RJ externí reference pro TC

<u>Výrobce</u>

MEATEST, s.r.o. 886 Železná 509/3, 619 00 Brno Czech Republic <u>www.meatest.com</u> tel: +420 543 250

fax: +420 543 250 890 meatest@meatest.cz

CE Prohlášení o shodě

Podle normy EN ISO/IEC 17050-1:2010 a směrnic Evropského parlamentu a Evropské rady, MEATEST, spol. s r. o., výrobce Přesného DC kalibrátoru M160, se sídlem Železná 3, 619 00 Brno, Česká republika, prohlašuje, že jeho produkt odpovídá následujícím specifikacím:

LVD

- EN 61010-1 ed. 2:2010 + A1:2016 + COR1:2019-03

EMC

- EN 61000 part 3-2 ed. 5:2019
- EN 61000 part 3-3 ed. 3:2014
- EN 61000 part 4-2 ed. 2:2009
- EN 61000 part 4-3 ed. 3:2006 +A1:2008+A2:2011+Z1:2010
- EN 61000 part 4-4 ed. 3:2013
- EN 61000 part 4-5 ed. 3:2015 + A1:2018
- EN 61000 part 4-6 ed. 4:2014
- EN 61000 part 4-11 ed. 2:2005
- EN 61326-1 ed. 3:2020
- EN 55011 ed. 4:2015 + A1:2016 + A11:2020

RoHS

- EN IEC 63000:2018

WEEE

- EN 50419:2022

Podpis

Brno

Místo

26. únor 2025 Datum